101 research outputs found

    Detection, numerical simulation and approximate inversion of optoacoustic signals generated in multi-layered PVA hydrogel based tissue phantoms

    Get PDF
    In this article we characterize optoacoustic signals generated from layered tissue phantoms via short laser pulses by experimental and numerical means. In particular, we consider the case where scattering is effectively negligible and the absorbed energy density follows Beer-Lambert's law, i.e. is characterized by an exponential decay within the layers and discontinuities at interfaces. We complement experiments on samples with multiple layers, where the material properties are known a priori, with numerical calculations for a pointlike detector, tailored to suit our experimental setup. Experimentally, we characterize the acoustic signal observed by a piezoelectric detector in the acoustic far-field in backward mode and we discuss the implication of acoustic diffraction on our measurements. We further attempt an inversion of an OA signal in the far-field approximation.Comment: 10 pages, 6 figures, supplementary code at https://github.com/omelchert/SONOS.gi

    Towards multimodal detection of melanoma thickness based on optical coherence tomography and optoacoustics

    Get PDF
    Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology. © 2016 SPIE

    Fibre Optic Sensors for the Structural Health Monitoring of Building Structures

    Get PDF
    AbstractIn this work different fibre optic sensors for the structural health monitoring of civil engineering structures are reported. A fibre optic crack sensor and two different fibre optic moisture sensors have been designed to detect the moisture ingress in concrete based building structures. Moreover, the degeneration of the mechanical properties of optical glass fibre sensors and hence their long-term stability and reliability due to the mechanical and chemical impact of the concrete environment is discussed as well as the advantage of applying a fibre optic sensor system for the structural health monitoring of sewerage tunnels is demonstrated

    Exploiting the Internet Resources for Autonomous Robots in Agriculture

    Get PDF
    Autonomous robots in the agri-food sector are increasing yearly, promoting the application of precision agriculture techniques. The same applies to online services and techniques implemented over the Internet, such as the Internet of Things (IoT) and cloud computing, which make big data, edge computing, and digital twins technologies possible. Developers of autonomous vehicles understand that autonomous robots for agriculture must take advantage of these techniques on the Internet to strengthen their usability. This integration can be achieved using different strategies, but existing tools can facilitate integration by providing benefits for developers and users. This study presents an architecture to integrate the different components of an autonomous robot that provides access to the cloud, taking advantage of the services provided regarding data storage, scalability, accessibility, data sharing, and data analytics. In addition, the study reveals the advantages of integrating new technologies into autonomous robots that can bring significant benefits to farmers. The architecture is based on the Robot Operating System (ROS), a collection of software applications for communication among subsystems, and FIWARE (Future Internet WARE), a framework of open-source components that accelerates the development of intelligent solutions. To validate and assess the proposed architecture, this study focuses on a specific example of an innovative weeding application with laser technology in agriculture. The robot controller is distributed into the robot hardware, which provides real-time functions, and the cloud, which provides access to online resources. Analyzing the resulting characteristics, such as transfer speed, latency, response and processing time, and response status based on requests, enabled positive assessment of the use of ROS and FIWARE for integrating autonomous robots and the Internet
    corecore